Defend of Course Works (CW) according to our curricular will be held on:
December 14 at 13:30 in 238 class.
December 19 at 15:30 in 103f and on
December 21 at 13:30 in 238 class.

Bob is thrown into the prison.
Jailor verifies all the messages Alice sends to Bob.
How Alice can tell Bob that she intends to release him by any means using her secret personal contacts?

Simmons G. J., 1985, 1994
https://scholar.google.com/scholar?start=0\&q=Simmons+G.+J.\&hl=en\&as sdt=0,5

Subliminal Channel - Steganography

Graffiti: drawing in the walls

ElGamal Cryptosystem

1.Public Parameters generation

Gennerate strong prime number \mathbf{p}.
Find a generator g in $\mathrm{Z}_{\mathrm{p}}{ }^{*}=\{1,2,3, \ldots, \mathrm{p}-1\}$ using condition.
Strong prime $p=2 \boldsymbol{q}+1$, where \boldsymbol{q} is prime, then g is a generator of $\boldsymbol{Z}_{P}{ }^{*}$ iff
$g^{q} \neq 1 \bmod p$ and $g^{2} \neq 1 \bmod p$.
Declare Public Parameters to the network $P P=(p, g) ; \quad \begin{aligned} & p=268435019 ; \\ & 2^{\wedge} 28=268435456\end{aligned}$
2.Private Keys Prk and public Public Keys PuK generation.

Asymmetric Encryption - Decryption
c=Enc(PuK ${ }_{A}, m$)
$\mathrm{m}=\operatorname{Dec}\left(\operatorname{PrK}_{\mathrm{A}}, \mathrm{c}\right)$

Asymmetric Signing - Verification
$\mathbf{S = S i g}\left(\operatorname{PrK}_{\mathrm{A}}, \mathrm{m}\right)$
$\mathbf{V}=\operatorname{Ver}\left(\operatorname{PuK}_{A}, \mathbf{S}, \mathbf{m}\right), \mathbf{V} \in\{$ True, False $\} \equiv\{1,0\}$

3.Signature creation

To sign any finite message \boldsymbol{M} the signer performs the following steps using public parametres PP.

- Compute $\mathbf{h}=\mathbf{H}(\mathbf{M})$.
- Choose a random k such that $1<k<p-1$ and $\operatorname{gcd}(k, p-1)=1$.
- $\mathbf{k}^{-1} \bmod (p-1)$ computation: $\mathbf{k}^{-1} \bmod (p-1)$ exists if $\operatorname{gcd}(k, p-1)=1$, i.e. \mathbf{k} and $p-1$ are relatively prime. k^{1} can be found using either Extended Euclidean aljorithmt or Euler theorem or
$\gg \mathrm{k} _\mathrm{m} 1=\mathrm{mulinv}(\mathrm{k}, \mathrm{p}-1) \quad \% \mathbf{k}^{-1} \bmod (\mathrm{p}-1)$ computation.
- Compute $r=g^{k} \bmod p$
- Compute $\mathbf{S = (h - x r)} \mathbf{k}^{-1} \bmod (p-1)$--> $h=x r+s k \bmod (p-1)$, Signature $\boldsymbol{\sigma}=(\mathbf{r}, \mathbf{s})$

4.Signature Verification

A signature $\boldsymbol{\sigma}=(\boldsymbol{r}, \boldsymbol{s})$ on h-value \boldsymbol{h} of message \boldsymbol{M} is verified using Public Parameters $\mathrm{PP}=(\mathrm{p}, \mathrm{g})$ and PuK $_{A}=a$.

1. Bob computes $\mathbf{h}=\mathbf{H}(\mathbf{M})$.
2. Bob verifies if $1<r<p-1$ and $1<s<p-1$.
3. Bob verifies $\mathbf{V} 1=g^{h} \bmod p, \mathbf{V} 2=a^{r} r^{s} \bmod p$, and $\mathbf{V} 1=\mathbf{V} 2$.

The verifier Bob accepts a signature if all conditions are satisfied and rejects it otherwise.

5.Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be accepted by the verifier.
The signature generation implies

$h=x r+k s \bmod (p-1)$

Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)
$g^{h} \bmod p=g^{(x r+k s)} \bmod (p-1) \bmod p=g^{x r} g^{k s}=\left(g^{x}\right)^{r}\left(g^{k}\right)^{s}=a^{r} r^{s} \bmod p$
M - message to be signed.
m-secret short message $|m|<|p-1|$ to be sent together with ElGamal signature $\sigma=(r, s)$ on M.

Using some known encoding method Encod() message m must be encoded to the number $z=\operatorname{Encod}(m)$
It is assumed that $z=K$ in ElGomal signature scheme.
Then z must satisfy $\operatorname{gcd}(z, p-1)=1$
If it is not the case, then m must be slightly modified to satisfy (*).

If p is strong prime, then $p=2 q+1$, when q-is prime. Then $p-1=2 q$ and $\operatorname{gcd}(z, p-1)=\operatorname{gcd}(z, 2 q)$
Then to have $\operatorname{gcd}(z, 2 q)=1 \Longleftrightarrow z \neq i q \& z \neq$ even number. If $\operatorname{gcd}(z, p-1) \neq 1$, then change $m \rightarrow$ recompute $z \operatorname{in}(*)$ until $\operatorname{gcd}(z, p-1)=1$.

Signature creation:

1. Compute $h=H(M)$
2. Compute $r=g^{z} \bmod p$
3. compute $z^{-1} \bmod (p-1)$
4. Compute $s=\left(h-x r^{2}\right) z^{-1} \bmod (p-1)$
5. Parameter s must satisfy $\operatorname{gcd}(s, p-1)=1$ to exist $s^{-1} \bmod (p-1)$ If p is strong prime, then $p=2 q+1$, when q-is prime. Then $p-1=2 q$ and $\operatorname{gcd}(s, p-1)=\operatorname{gcd}(s, 2 q)$
Then to have $\operatorname{gcd}(s, 2 q)=1 \longmapsto s \neq i q \& s \neq$ even number.

If $\operatorname{gcd}(s, p-1) \neq 1$, then change $M \rightarrow$ recompute h in $(1) \rightarrow$
\rightarrow recompute s in (4.) until $\operatorname{gcd}(s, p-1)=1$.
6. Signature is $\sigma=(r, S)$ on M.

$$
\begin{aligned}
& A: M, m \leftrightarrow z ; \operatorname{gcd}(z, p-1)=1, \\
& \frac{M, \sigma=(r, s)}{a} B: \\
& \sigma=(r, s) ; \operatorname{gcd}(s, p-1)=1 . \quad h=H(M) \\
& \\
& s=(h-x \cdot r) \cdot z^{-1} \operatorname{mor}(a, \sigma, h)=\text { True }(p-1) \quad \cdot / z \bmod p \\
& z \cdot s=(h-x \cdot r) \cdot z^{-1} \cdot z \bmod (p-1) \cdot / s^{-1} \bmod p \\
& \\
& z \cdot s \cdot s^{-1}=(h-x \cdot r) \cdot s^{-1} \bmod (p-1) \\
& z=(h-x \cdot r) \cdot s^{-1} \bmod (p-1)
\end{aligned}
$$

$\operatorname{Decod}(z)=m$.

Bit commitment
Massey-Omura 3-pass Protocol
3-pass protocol for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys.
Bit Commitment.

B: Should I sell my bitcoins?
A: Don't hurry, I know the price for next month.
B : Then tell me please,
A: I'll tell you next month, but if you want to know immediatly give me 3 BIC.
B; How I can know that you are not cheating?
A : We can use Bit commitment scheme,

Public parameter $P P=p=268435019$; $g=2$;
$A: K_{A}=\left(e_{A}, d_{A}\right)$
$e_{A} \cdot d_{A}=1 \bmod (p-1)$

1) Choose e_{A} at random

$$
\operatorname{gcd}\left(e_{A}, p-1\right)=1
$$

2) $d_{A}=e_{A}^{-1} \bmod (p-1)$
$>d A=$ mulinv $(e A, p-1)$
$B: K_{B}=\left(e_{B}, d_{B}\right)$
$e_{B} \cdot d_{B}=1 \bmod (p-1)$
3) \ldots.

2') \ldots
M-message : Bitcoin price next month $|M|<|p-1|$.
St: Encrypts M with encryption function ε similar to $R S A$ encryption and finds ciphertext c_{1}
A : sends ciphertext C_{1} to B.

$$
\varepsilon\left(e_{A}, M\right)=M^{M_{A} \bmod p=c_{1}} \underset{c_{1}}{c_{2}} B: c_{2}=\varepsilon\left(e_{B}, c_{1}\right)=c_{1}^{e_{B}} \bmod p
$$

After 1 month: Elon Musk declared that that payments for electrocar Tesla can be made in bitcoins (BTC) 68000 USD.
$A: c_{3}=\varepsilon\left(d_{A}, c_{2}\right)=c_{2}^{d_{A}} \bmod p$

$$
\begin{aligned}
& c_{3} \quad B: c_{4}=c_{3}^{d_{B}} \bmod p= \\
& =\left(c_{2}^{d_{A}}\right) d_{B}=\left(\left(c_{1} e_{B}\right) d_{A}\right) d_{B}= \\
& =\left(\left(\left(M_{A}\right)^{e_{B}}\right) d_{A}\right) d_{B} \bmod P= \\
& =M^{\left(e_{A} d_{A}\right)\left(e_{B} d_{B}\right) \bmod (p-1)} \bmod p=
\end{aligned}
$$

$e_{A} \cdot d_{A} \bmod (p-1)=1 \& \quad e_{B} \cdot d_{B} \bmod (p-1)=1$

$$
=M^{1 \cdot 1} \bmod p=M=65000
$$

$$
\begin{aligned}
& A: 3 \text { ETC } \times 65000 \$=195000 \$ \\
& B: \quad 68000 \$-25000 \$=43000 \$ \\
& 10 \mathrm{BTC} \times 43000 \$=\ldots
\end{aligned}
$$

Compare qualitatively Massey-Omura 3-pass Protocol with bit commitment based on H -functions.
Let M be a porecasted bitwin price
$A:$ 1. $h=H(M) \longrightarrow \beta$: waited for 1 mont
After 1 month M Verifies if

$$
h^{\prime}=H(M)=h .
$$

